Python for Data Science

5,900.00 (Inc. GST)

SKU: N/A Category:

The Python for Data Science course is an intensive, application-oriented program designed to introduce participants to the foundational techniques used in Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL). Spanning 60 hours, this practical training program provides hands-on experience necessary for building AI-based models. The curriculum covers real-world scenarios and prepares participants to work on a variety of applications. Ideal for experienced professionals from various IT backgrounds, this course equips you with the skills needed to excel in data science.

Prerequisites:

  • Familiarity with the basics of Python programming is helpful, though not mandatory.

Key Learning Outcomes:

Upon completing this course, you will be able to:

  • Stay relevant in the industry and advance your career.
  • Work with essential Python libraries like Numpy, Matplotlib, and Pandas.
  • Apply data visualization techniques in real-world scenarios.
  • Handle and process various types of data effectively.
  • Utilize Pandas and its functionalities for data analysis.

Target Audience:

  • This course is ideal for individuals who wish to delve into data science and pursue a career in the growing fields of Artificial Intelligence, Machine Learning, Deep Learning, Data Analytics, and Data Science.

Test & Evaluation:

  • Participants will be required to complete assignments throughout the program to ensure practical learning.
  • A final assessment will be conducted at the end of the program.

Certification:

  • Successful participants will receive a Certificate of Completion.
  • Participants will also receive a Project Letter upon successful completion of the Project.
  • Students who leave the course midway or fail to complete it will not receive any certification.

Delivery Mode & Duration:

  • Mode: Online Live Sessions
  • Duration: 120 Hours (60 Hours of Online Live Sessions + 60 Hours of Assignments)

Additional information

Centre for Summer Training

IIT Kanpur Campus, Online Live

Batch Date

Batch 1, Batch 2

Curriculum

Module 01 – An Introduction to PYTHON

  • Introductory Remark about Python
  • A Brief History of Python
  • How Python is different from other languages
  • Python Version
  • Installing Python
  • IDLE
  • Getting Help
  • How to execute a Python program?
  • Writing your first program

Module 02 – Python Basics

  • Introduction
  • Python keywords and Identifiers
  • Python statements
  • Comments in python
  • Basic Syntax
  • Printing on screen 
  • Getting user input -Reading data from keyboard 
  • Exercise
  • Key Takeaways

Module 03 – Variables and data types

  • Introduction
  • Variables
  • Data types
  • Numbers
  • Strings

Module 04 – Arrays in Python

  • Lists
  • Tuples
  • Dictionary
  • Exercise

Module 05 – Decision making & Loops

  • Introduction
  • Control flow and syntax
  • The if statement
  • Python operators
  • The while Loop
  • Break and continue
  • The for Loop
  • Pass statement
  • Exercise

Module 06 – Function

  • Introduction of Function
  • Calling a function
  • Function arguments
  • Built in function
  • Scope of variables
  • Decorators
  • Passing function to a function

Module 07 – Modules and Packages

  • Introduction of Modules and Packages
  • Importing Modules
  • Standard Modules- sys
  • Standard Modules- OS
  • The dir() Function
  • Packages

Module 08 – Exception Handling

  • Introduction of Exception Handling
  • Errors
  • Run Time Errors
  • Handling IO Exception
  • Try….except statement
  • Raise
  • Assert

Module 09 – File Handling in Python

  • Introduction of Exception Handling
  • Introduction to File Handling in Python
  • Files and Directories
  • Writing Data to a file
  • Reading data from a file
  • Additional file methods
  • Working with files 
  • Working with Directories
  • The pickle Module

Module 10 – Mathematical Computing using NumPy

  • Learning objectives
  • Introduction of NumPy in Python
  • Install NumPy
  • NumPy Creating Arrays
  • Operations Using NumPy
  • NumPy Data Types
  • NumPy – Array Creation Routines
  • NumPy – Indexing & Slicing
  • NumPy – Advanced Indexing
  • NumPy Integer Indexing
  • NumPy Boolean Array Indexing
  • NumPy – Iterating Over Array
  • NumPy – Broadcasting
  • NumPy – Array Manipulation
  • NumPy – Mathematical Functions
  • Vectorization for fast computation
  • Matrix operations (dot(), det(), inv())
  • Random sampling (np.random.choice(), np.random.rand())

Module 11 – Data visualization using Matplotlib

  • Learning objectives
  • Data Visualization
  • Considerations of Data Visualization
  • Factors of Data Visualization
  • Python Libraries
  • Create Your First Plot Using Matplotlib
  • Line Properties
  • Create a Line Plot for Football Analytics
  • Multiple Plots and Subplots
  • Create a Plot with Annotation
  • Create Multiple Plots to Analyze the Skills of the Players
  • Create Multiple Subplots Using plt.subplots
  • Types of plots
  • Create a Stacked Histogram
  • Create a Scatter Plot of Pretest scores and Posttest Scores
  • Create a Pie Chart
  • Create a Bar Chart
  • Create Box Plots
  • Analyzing Variables Individually
  • Key Takeaways

Module 12 – Pandas

  • Learning Objectives
  • Introduction to Pandas
  • Data structures of Pandas 
  • Pandas Series
  • Pandas DataFrames
  • Pandas Object creation
  • Viewing Pandas data
  • Selection on Pandas Data
  • Operations on Pandas Data
  • Essential basic functionality on Pandas DataFrame
  • Head and tail on Pandas DataFrame
  • Attributes and underlying data
  • Grouping
  • Sorting
  • Importing and exporting data
  • Indexing and selecting data
  • Different choices for indexing
  • Attribute access
  • Slicing ranges
  • Selecting random samples

Module 13- Data Preprocessing & Cleaning

  • Handling missing values (dropna(), fillna())
  • Handling duplicate data
  • String operations for text cleaning (strip(), lower(), replace())
  • Working with timestamps (pd.to_datetime())
  • Feature scaling (StandardScaler, MinMaxScaler)

Module 14-Exploratory Data Analysis (EDA) 

  • Understanding distributions using histograms & box plots
  • Correlation analysis (corr())
  • Detecting outliers
  • Visualizing relationships using pair plots & scatter plots
  • Grouping and aggregation

Module 15-Working with APIs & Web Scraping (After File Handling)

  • Calling APIs with Python (requests)
  • Parsing JSON/XML data
  • Web Scraping with BeautifulSoup
  • Handling API rate limits

Capstone Project: Data Analysis  Using Python

Enquiry